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LETTER TO THE EDITOR 

Constraints on the time-reversible Liouville equation in order to 
derive a stochastic order-parameter equation at the onset of a 
convective roll pattern 

Ariel Fernandezi 
Frick Laboratory, Princeton University, Princeton, NJ 08544, USA 

Received 4 June 1987 

Abstract. It is shown that an adequate Fokker-Planck equation for the transition to a 
convective roll pattern in a Rayleigh-BCnard cell can be derived by projecting the time- 
reversible Liouville equation onto the centre manifold for the onset and introducing the 
source of irreversibility on the initial conditions. Thus we elucidate the microscopic origin 
of the random source in the order-parameter evolution. 

We shall be concerned with the microscopic origin of the random source in the 
order-parameter equation for the onset of a convective roll pattern in a Rayleigh-Btnard 
cell [ 1-41. In a realistic experimental set-up, the cell is swept through its threshold by 
means of a controlled heat input. The temperature of the bottom plate is time dependent 
(and therefore so is the Rayleigh number) and there is a step in the heat input [3, 41. 
At the level of macroscopic degrees of freedom, the Fokker-Planck (FP) equation 
associated with the transition can be conveniently derived by introducing a stochastic 
counterpart of the adiabatic following [4] of fast-relaxing degrees of freedom to the 
excited modes. In other words, the contraction in the space of macrovariables can be 
accounted for by means of the existence of a locally attractive locally invariant centre 
manifold (cM). The relevant macroscopic degrees of freedom are the Fourier com- 
ponents, denoted VY) ( j  = 1,2,  . . . ; q being a two-dimensional wavevector, as in the 
case of a smectic crystal) of a stochastic vector field V which comprises the velocity 
field (U, w )  ( U  being the two-dimensional component) and the deviation of temperature 
from the linear conducting profile, denoted 8. Thus, near the threshold, the following 
decomposition holds: 

V = X , + X ,  ( 1 )  
where 

(qo = critical wavevector). The CM coordinates are the components of the vector X, 
and the subordinated modes are given by Xf. The vectors e:’ are the eigenvectors of 
the linear Boussinesq operator (see [3, 41 for details). 

t Present address: Max-Planck-lnstitut fur Biophysikalische Chemie, Am Fassberg, D-3400 Gottingen, 
Federal Republic of Germany. 
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In principle, the macrovariables V?), j = 1, .  . . , are functions of the position, qmr 
and momenta, pm, of all the particles of the fluid. Therefore, we can boldy state that 
it must be possible to derived a cM-smeared FP equation to be satisfied by the probability 
distribution Qs(Xs, t )  for the order parameters. Given that the Liouville equation for 
the microscopic distribution p = p ( { p , } ,  { q m } ,  t )  is time reversible, it is intuitively clear 
that the irreversibility must be included in the process of smoothing the solution by 
averaging over the initial moments of time [5,6]. In doing so, we get rid of the 
unphysical dependence of p on the initial moment t o .  At that moment, p coincides 
with a microscopic CM distribution p, to be determined. This is done by taking into 
account that the thermal average of S(X:-X,) which is equal to QS must be the same 
as the average obtained making use of p :  

(4) 

The symbol (( )) denotes a thermal or statistical average and X: is the order- 
parameter vector, dependent on pm and qm ( m  labels each particle). 

Thus, the basic strategy is to introduce a Mori-type [S, 61 projector formalism to 
reduce the Liouville equation to the CM.  In order to make this clear, we shall first 
give the basic tenets of the CM approach. 

(i)  Let A V ' < <  0 denote the damping constant for the fast-relaxing degree of freedom 
V:), j z 2 .  Then, after a relaxation time T C M  given by 

((s(x: - Xs)))p = ( (8(x:  - XI)). 

the probability density functional P = P(Xs, Xf, t )  is constrained to a narrow strip 
about the CM such that 

Wf)) = ((*f(XJ). (6) 

p = QS(XS, t)Qf(XflXJ (7 )  

(ii) The following ansatz is valid: 

where Qf represents a conditional probability which describes the statistical enslave- 
ment of the fast-relaxing variables to the order parameters. In order to allow for a 
continuous flow of probability about the CM, Qf takes the form of a Gaussian peaked 
at the CM: 

where the Gaussian widths w y ' =  (2gy))-' must be determined from the condition that 
the integration of the general FP equation for P along the CM, i.e. with respect to the 
fast variables, should yield the appropriate FP equation for Qs [l ,  21. This procedure 
accounts for the effect of fast hydrodynamic modes which have been projected out in 
the derivation of the FP equation for the transition to the convective pattern. 

Thus, the microscopic distribution p has the general form 

P ( f ) =  1 ( ~ ( 8 ( X ~ - X s ) ) ) - 1 Q ( X s ,  f)8(xg-Xs)dXs ( 9 )  

where I (  ) denotes integration over the coordinates and momenta of all the particles 
normalised by the factor l/(h3"!). 
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We shall show that the source of irreversibility in the procedure of derivation of 
a smeared FP equation for the order parameters does not come from the Liouville 
equation but from the causal character of the boundary conditions imposed. The 
starting point is the Liouville equation for p (  t ) :  

(10) 
a 
at 
- p (  t )  + iLp( t )  = 0 

where L is the Liouville operator iLp = {HI p } ,  with H being the Hamiltonian of the 
system. 

The source of irreversibility is introduced by assuming that, in agreement with the 
CM reduction, the solution of (10) coincides with the CM microstate distribution at the 
instant to in the remote past: 

p ( t )  = e x p ( - N t -  t o ) ) P ( t o ) .  (11) 

In order to get rid of this unphysical dependence on the initial moment to,  we introduce 
a smoothing procedure by averaging over all initial moments t& between to and t :  

p ( r ) =  T-’ exp[-il( t-  tb)]p(tb) dtb T = t - t o  (12) 11: 
i.e. over the length of time T which is very near the thermodynamic limit T +  cc (cf [ 5 ] ) .  

However, this procedure leads to a breakdown of the time-reversal symmetry since 
the function given by (12) is a solution, not of the Liouville equation in its original 
form, but of a new equation containing an infinitesimal source describing the relaxation 
of p ( t )  to the CM: 

a 
- p + i Lp = - T - ’ ( p  ( t ) - p ( t ) ). 
a t  

This relaxation to the C M  has an extremely slow mean time if we operate near the 
thermodynamic limit. Therefore, the source of irreversibility due to ‘contamination’ 
with the phenomenological C M  contraction can be made arbitrarily small. 

In the spirit of Mori’s projection operator formalism [6], we shall define aprojector 
in order to restrict the system to the CM, i.e. we transform a microstate distribution A 
into an order parameter distribution UA: 

UA = ( I ( 6 (Xi - X , ) ) ) - ’  I ( A6 (XI - X , )  ) 6 ( X :  - X,) dX, (14) 

(15) 

It can be readily verified that this operator is a projection operator and that it has the 
additional properties 

I 
UA = UA(X:,  t ) .  

UP = P (16) 

up = p. (17) 
Therefore, we can write an equation for p in the compact form 

a 
- p =  at U p = - U i L ( p - p ) - U i L p .  (18) 
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Making use of this formalism we can now derive the generalised force, M(X,), 
responsible for the diffusive pressure produced by the far-from-equilibrium fluctuations. 
This diffusive pressure competes with the deterministic fast drift towards the C M  

determined by the separation of relaxation timescales. Therefore, the generalised forces 
determine the Gaussian width of the probability density Qf about the C M .  In other 
words, these forces are orthogonal to the C M :  

M ( X , ) = ( l -  U)8(Xi-Xs)iLXi. (19) 

The conjugated fluxes orthogonal to the C M  are 

a 
ax, J(X,)=----M(Xs)=(l- U)iLG(X:-X,). (20) 

The thermal average of the fluxes is therefore given by 

where the kernel K is given by 

K(X:, X,, t )  = I (M(X,)  exp[(l-  U)itL]M(X:)) 

and 

where 

L(X,) = I(8(x:-xs)). 

w(x,) = I(8(xl-Xs)iLX:)/L(X,) = (((Vi”))),. 

Finally, the speed of the order parameters is given by 

Thus, we arrive at the retarded FP equation for 0,: 

In order to explicitly evaluate the averaged flow, we must make use of the following 
additional property of the projector: 

( l - U ) p = P  (27) 
where f i  is the microscopic distribution induced by Qf. The definition of /? is completely 
analogous to that of P. In addition, the calculation requires the explicit equation for 
the CM. This is given by [ l ]  

where the inner product ( V I ,  V,) is given by 

(v l ,  V , ) = [ C ~ T ~ ~ + R , ( U T  ~ U , + W T W ~ ) I , , , .  (29) 
The symbol [ I,,, denotes an average over a layer, i.e. along the coordinate orthogonal 

to the q space. The bilinear operator N (  VI,  V,)  is the non-linear part of the Boussinesq 
operator [3,4]. 
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In order to make use of equation (27), we need the explicit form of the gv’ which 
give the competition between the fast drift towards the CM and the effect of the diffusive 
pressure: 

4 (30) g ( J )  = - A ( J )  / (db”) ’  

where the d v ’  are the effective diffusion coefficients [l] .  In order to properly scale 
these coefficients, we factorise them as dbJ’ = kdv’  where k is a small parameter which 
in the phenomenological derivation is scaled with the small control parameters and 
dbJ’ = O( 1). 

Making use of (21) and (27)-(30), we obtain the following equation: 
a vb“gy 

((J(XS))) = - c ((( VP)) c & -a) - c c ( a  vb“((VibJ’)))Qs 
M = 4 0  J ” 2  4 2gq 14/=40 J ” 2  

- c 2k2(d“)2gb“Q,+ 4k2d~’d$’av;l)((( V$’)))QS 
/ql=qo J 2 9.4 J‘2 

where the speed of the fast-relaxing degrees of freedom is determined by an equation 
analogous to (25): 

( ( ( V p ) ) ) ) q , j  = W ( x f )  = ( Z ( ~ ( x ~ - x f ) i ~ x ~ ) / ~ ( x f ) .  (32) 

It is clear that equation (26) with the averaged flow orthogonal to the CM as given by 
equation (31) is identical to the results given previously in [ l ]  where a restriction of 
the Navier-Stokes equation to the CM was performed. 
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